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Morphological variation of the goldfish is known to have been established by
artificial selection for ornamental purposes during the domestication process.
Chinese texts that date to the Song dynasty contain descriptions of goldfish
breeding for ornamental purposes, indicating that the practice originated over
one thousand years ago. Such a well-documented goldfish breeding process,
combined with the phylogenetic and embryological proximities of this species
with zebrafish, would appear to make the morphologically diverse goldfish
strains suitable models for evolutionary developmental (evodevo) studies. How-
ever, few modern evodevo studies of goldfish have been conducted. In this
review, we provide an overview of the historical background of goldfish breed-
ing, and the differences between this teleost and zebrafish from an evolutionary
perspective. We also summarize recent progress in the field of molecular devel-
opmental genetics, with a particular focus on the twin-tail goldfish morphology.
Furthermore, we discuss unanswered questions relating to the evolution of the
genome, developmental robustness, and morphologies in the goldfish lineage,
with the goal of blazing a path toward an evodevo study paradigm using this tel-
eost species as a new model species. © 2016 The Authors. WIREs Developmental Biology pub-

lished by Wiley Periodicals, Inc.
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INTRODUCTION

The goldfish (Carassius auratus) is a well-known,
ornamental, domesticated teleost species, which

consists of a number of morphologically divergent
strains (Figure 1). Because of the morphological
attractiveness of the goldfish, this teleost species has
spread all over the world, where it is bred by bree-
ders and fanciers.2–5 Such extensive diversity makes
goldfish particularly advantageous as a model organ-
ism, as we discuss below. The domestication

processes of goldfish strains have been documented
by authors in many different countries using different
languages.1–9 Of these reports, the descriptions by
Smartt2 are the most up-to-date and cover the widest
range of the literature. Although detailed descriptions
of the cultural historical background of goldfish
breeding from the middle ages to the early modern
period of China are out of the scope of this review,
this article begins with a brief recap of earlier reviews
which will help indicate the length of time that gold-
fish have been under artificial selection.

It is assumed that the origin of goldfish breed-
ing is correlated with paddy rice cultivation, which
required water storage, thereby providing a habitat
for the fish.2 Although it is not clear why people
started to breed goldfish, it is possible that they were
initially maintained as a high protein source in rice
fields and irrigation ponds; this is plausible, as
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goldfish and its relatives have long been popular as
food sources in areas influenced by Chinese culture.2

There is greater uncertainty about the subsequent

history; however, it is hypothesized that the color
mutant goldfish may have been maintained and
released into ponds from the Qin to Tang dynasty

FIGURE 1 | Variation of goldfish strains. (a–i) Dorsal views of nine different goldfish strains: (a) the single fin Wakin; (b) duplicated caudal fin
Wakin; (c) Ryukin; (d) Oranda; (e) Redcap Oranda; (f ) telescope (the ‘black moutan’ strain); (g) telescope (butterfly tail); (h) red-color telescope;
and (i) Ranchu (Reprinted with permission from Ref 27. Copyright 2014). (j) Illustration of Matsui’s genealogical diagram.1 The name of each
strain is based on Ref 1. Solid and dotted lines indicate spontaneous mutation and hybridization of different strains, respectively.
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periods, due to their rarity in nature, and for reli-
gious reasons.2,8,9 During this period, the selective
pressure on goldfish morphology appears to have
been relatively weak.

It is believed that strong artificial selection of
goldfish morphological features may have begun in
the Song dynasty (960–1279) (Figure 2), because cer-
tain publications provide evidence that goldfish
domestication for ornamental purposes began in ear-
nest at this time.2 Subsequently, the twin-tail goldfish
and some other fin and eye morphology mutants
were documented during the Ming (1368–1598) and
Qing (1644–1912) dynasties.2,8 It is assumed that
almost all mutants with changes in internal skeletal
morphologies (twin-tail, dorsal finless, globular body
shape, and pop-eye) were established during these
era, based on descriptions in the relevant archives.2,8

The establishment of such morphologically diverse
strains in this early period of goldfish domestication
is significant in an evodevo context, as such strains
provided 19th century biologists with an opportunity

to consider the divergence of animal body shape in
nature.16,17

These morphological variations have been of
interest in subsequent studies, and the manner of
their inheritance and anatomical features were inves-
tigated using classical genetic and anatomical
methods.1,6,7,18–26 However, there are no reports of
evodevo research employing molecular developmen-
tal approaches, with the exception of our twin-tail
goldfish study (Figures 1 and 2).27 Thus, in this
review, we first introduce recent progress of studies
on the twin-tail goldfish27 and some other goldfish
morphological mutations, in comparison with zebra-
fish mutants.1–7,28–30 Secondly, we also consider the
strengths/weaknesses and potential of goldfish as a
model animal, the differences between zebrafish
mutagenesis and the goldfish breeding process, and
the relationship between genome duplication and
goldfish morphological divergence. Finally, we pro-
pose a hypothesis and discuss future perspectives on
the relationship between genetic variation and

FIGURE 2 | Phylogenetic relationships between goldfish, common carp, and 10 representative ray fin fish species in which whole genome
sequences are available are described based on Refs 10–13; Fugu, Cichlid, Medaka, and Stickleback are collectively grouped as Percomorpha.
Evolutionary events and their dating in the lineages of goldfish, common carp, and zebrafish are based on Refs 8, 10–12, and 14(circles and
squares). CE and MYA indicate Common Era and million years ago, respectively. The branch lengths were drawn arbitrarily and do not reflect
evolutionary time. Previously reported divergence times (MYA) of each node are indicated in italics.15
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developmental mechanisms in goldfish morphological
evolution.

TWIN-TAIL GOLDFISH AND ITS
GENETIC BACKGROUND

Twin-tail morphology was previously described at
the anatomical and embryological levels
(Figure 3).23,25,26 Genetic analyses of this morpho-
logical trait were performed by two researchers.1,22

However, this morphological feature was not revis-
ited by researchers in the field of molecular develop-
mental genetics until its responsible gene was recently
identified.27 In this section, we explain the anatomi-
cal features of twin-tail morphology and its signifi-
cance in evodevo studies, and discuss the relationship
between such goldfish morphology and dino/chordin
zebrafish mutants.

Axial Skeletal Morphology in
Twin-Tail Goldfish
The detailed skeletal anatomy of the bifurcated cau-
dal and anal fins, their developmental process, and
variations of the bifurcated caudal skeletons in terms
of their number of elements were first described by
Watase23 (Figures 1(b)–(i) and 3); he indicated that
not only caudal and anal fin rays, but also their
attaching endo-skeletons, are bifurcated in the twin-
tail goldfish strains.23 Subsequently, his paper was
introduced by William Bateson17 as an example of a
naturally occurring variation.

In the early 1900s, Matsui conducted a large-
scale genetic analysis.1,6 He made hybrid strains
between morphologically divergent goldfish parents
and analyzed the morphological features of the sub-
sequent generations, focusing not only on the twin-
tail, but also other morphological traits (dorsal fin,
eyes, etc.)1,6,7; in fact, he described the morphological
features and their modes of inheritance in great
detail. However, it appears that he was unable to
interpret the mode of inheritance of the twin-tail, pre-
sumably due to its complexity. Based on Matsui’s
data, Smartt2 claimed that the mode of inheritance
can be explained using one locus model with incom-
plete penetrance. However, this proposal has not
been tested. We effectively had no understanding of
the mode of inheritance of the twin-tail goldfish phe-
notype at the level of molecular biology until 2014,
when the chordin gene was identified as the one of
the genes essential for the twin-tail goldfish
phenotype.27

Dino/Chordin Mutant Zebrafish and
Twin-Tail Goldfish
Chordin genes act as a dorsal organizer in the
dorsal–ventral (DV) patterning of early embryogene-
sis (Figure 4(a)).31–42 Zebrafish with a mutation in
this gene are known as dino/chordin mutants
(Figure 5).37,38 The dino mutant, in which the region
encoding functional domains (cysteine-rich domains)
is completely lost from the chordin gene, has been
investigated by several researchers in the context of
early axis patterning and skeletal development in zeb-
rafish (Figure 5).37–41 In one such study, Fisher and
Halpern39 showed that dino adult individuals exhibit
variations in axial skeletal morphology. More signifi-
cantly, their study indicated that some dino mutants
exhibit bifurcated caudal skeletons.

Focusing on this phenotypic similarity between
dino and the twin-tail goldfish, Abe et al.27 per-
formed backcross and functional analyses of goldfish
(Figures 6 and 7). From the analyses, they learned
that the goldfish has two chordin gene paralogues
(designated as chdA and chdB), and that chdA of
twin-tail goldfish strains has a stop codon (X) in a
coding region; the wild-type (WT) and mutated chdA
alleles were named chdAwt and chdAE127X, respec-
tively (Figure 5(a)). From the position of the stop
codon, it is predicted that three of four cysteine-rich
domains will be absent from the encoded protein,
thereby reducing the function of the chdA gene
(Figure 5(b)).27,42 In fact, it was demonstrated that
twin-tail goldfish larvae with a dino-like phenotype
(duplicated fin fold and ventralized embryonic fea-
tures) are homozygous for the chdA alleles carrying
the premature stop codon (Figure 5(b)). It was also
shown that injection of chdAwt mRNA could rescue
the bifurcated caudal fin phenotype, while injection
of chdAE127X mRNA could not, suggesting that chdA
is responsible for the twin-tail phenotype
(Figure 7).27 As the chdAE127X allele is homozygous
in all of the twin-tail goldfish strains examined in this
study, it is predicted that this allele was fixed in the
common ancestor of the twin-tail goldfish strains.27

Moreover, analyses of the gene expression patterns
indicated that DV-pattering in the twin-tail goldfish
embryos is altered by the stop codon mutation in
chdAE127X; goldfish embryos exhibited a ventralized
phenotype (Figure 8).

The above work suggests that the chdAE127X

allele is essential for the twin-tail goldfish phenotype.
However, this study also identified two exceptional
goldfish individuals which were homozygous for the
chdAE127X allele, but did not exhibit twin-tail pheno-
types (Figure 6).27 At the genetic level, this type of
phenotype can be explained by one of the following
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phenomena: (1) multiple responsible loci (including
epistasis), (2) variations in penetrance and expressiv-
ity, and (3) combination of (1) and (2) (they are not
mutually exclusive). In fact, it is possible that chdB

compensates for the function of chdA in the twin-tail
goldfish (Figure 4(b); see below). In addition, given
that some other DV patterning-related genes (bmps,
sizzled, tll1, etc.) regulate (and are regulated by) the

FIGURE 3 | Anatomy of the caudal skeleton of twin-tail goldfish as described by Watase.23 (a) Drawings of transverse sections at the caudal
level in different goldfish specimens with variations in twin-tail morphology. Black colored ovals indicate skeletal elements. (b) Drawings of
transverse sections at the anal fin level in single (left) and bifurcated anal fin (right) goldfish specimens.
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chordin gene,31–34,40,41 their polymorphisms may
affect the penetrance and expressivity of the
chdAE127X allele (Figure 4(b)). More significantly,
taking into account reports that these DV patterning-
related genes form a robust feedback loop
system,31,32,34–36,40,41 the system may cancel out the
effects of the chdAE127X allele. In the above cases, it
is unclear whether simple genetic approaches [linkage
mapping, quantitative trait loci (QTL), etc.] would
be sufficient to identify additional genes responsible
for the twin-tail phenotypes.

Contribution of Subfunctionalization
toward Ensuring Both Survival and
Attractive Morphology
The survival rates of twin-tail goldfish and the dino
zebrafish mutant are clearly different from each
other.27,39 The survival rate of dino zebrafish is less
than 10%39; most dino zebrafish larvae exhibit mal-
formation of the swim bladder, resulting in high mor-
tality.39 However, twin-tail goldfish larvae do not
show such high mortality. Indeed, the survival rates

FIGURE 4 | Gene regulatory network of DV-patterning-related genes. (a) Zebrafish DV-patterning-related genes and their regulatory
relationship. (Reprinted with permission from Ref 31. Copyright 2011 Annual Review) (b) Hypothetical goldfish DV-patterning-related genes.
Hypothetical paralogous genes are indicated by single (0) and double (00) primes.

FIGURE 5 | Zebrafish and goldfish chordin genes. (a) Schematic representation of the Chordin amino acid sequences of zebrafish and goldfish.
Colored boxes indicate cysteine-rich domains. Arrowheads indicate the mutated sites. (b) Chordin gene alleles possessed by zebrafish dino mutants
and twin-tail goldfish strains.
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of backcross progenies are greater for mutated indivi-
duals (83.5%) than WT individuals (76%).27 We
offer three possible explanations to account for such
a high survival rate in twin-tail goldfish: (1) the
duplicated chdB gene compensates for the function
of the mutated chdA gene; (2) the remaining cysteine-
rich domain in chdAE127X retains part of the function
of the original chdA gene; and/or (3) some other loci
and/or alleles that have deleterious effects when

present with chdAE127X were eliminated by selective
pressure. One of these, or the combined effect of
multiple possibilities, may have improved the survival
rate of twin-tail goldfish during the domestication
process. Of these possibilities, the first appears to be
most probable, because of the almost the identical
molecular function and sub-functionalized gene
expression patterns of chdA and chdB, as discussed
below.

As duplicated paralogous genes have been pre-
viously indicated to be important for evolution,43–46

the chdB gene may play a substantial role in the for-
mation of the morphological features specific to

FIGURE 6 | Schematic representation of backcross analysis of the
twin-tail phenotypes. The number in bold indicates the number of
exceptional wildtype individuals (E127X/E127X), suggesting low
penetrance. (Reprinted with permission from Ref 27. Copyright 2014).

FIGURE 7 | Rescue phenotype of twin-tail goldfish. (a, b) Control twin-tail goldfish larval individuals. (c–g) Twin-tail goldfish individuals injected
at the one-cell zygote stage with chdAwt mRNA. The magnified views of caudal regions in (b) and (d) correspond to the asterisked specimens in
(a) and (c), respectively. (e) Lateral view of juvenile. (f ) Alcian blue- and alizarin red-stained specimen. (g) Magnified view of the caudal region of (f ).
Scale bars: 5mm (e, f ), 1 mm (a, c, g), 100 μm (b, d). (Reprinted with permission from Ref 27. Copyright 2014 Nature Publishing Group).

FIGURE 8 | Schematic representation of gene expression patterns
in wild-type and dino zebrafish, and wild-type and twin-tail goldfish
strains. Olive, light green, green, red, and blue regions represent areas
positive for zebrafish chordin, chdAwt, chdB, ventral markers (eve1,
sizzled, and bmp4), and krox20, respectively. Asterisks indicate areas
of krox20 expression in twin-tail goldfish and dino zebrafish.
(Reprinted with permission from Ref 27. Copyright 2014).
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twin-tail goldfish embryos. In fact, chdA and chdB
exhibit similar functions, at least at the coding
region.27 As such, one may assume that the potential
lethal effects resulting from the absence of chdAwt

are rescued by the presence of chdB. However, this
explanation cannot be accepted directly, as it raises a
further question: why does the chdB gene not com-
pletely cancel out the twin-tail phenotype? In other
words, if chdA and chdB have identical functions,
the stop codon mutation in chdAE127X may not exert
any significant effects on the embryonic features, pre-
venting the formation of twin-tail morphology in the
adult. The answer to this question is in their partly
(not completely) overlapping expression patterns. In
fact, their expression patterns diverge at the gastrula
stage; chdB displays narrow band-like expression
patterns at the dorsal side of the embryos, while
chdA shows broader expression patterns around the
blastoderm margin area (Figure 8). These different
expression patterns suggest that chdA and chdB play
different roles in goldfish embryos. Combined with
the observation that the blastoderm margin ulti-
mately moves toward the posterior region to form
the tail bud at the bud stage, it appears that the
absence or presence of chdAwt may affect the devel-
opment of the tail region. Moreover, the finding that
chdB is expressed in the dorsal region of twin-tail
goldfish at the bud stage suggests this gene has a sig-
nificant role at this region.

There are important differences in dorsal tissue
development between dino zebrafish and twin-tail
goldfish, including the observation that the size of
the hindbrain was reduced in the dino mutant as
compared with that of WT; such evident hindbrain
reduction could not be observed in twin-tail goldfish
(Figure 8). Such differences suggest that the presence
of subfunctionalized chdB expression patterns is
required to prevent excessive reduction of the hind-
brain, which may affect the survival rate of twin-tail
goldfish embryos.

The subfunctionalized gene expression patters
of chdA and chdB allow us to explain the process
by which goldfish with twin-tail morphology can
exhibit a high survival rate. The chdA and chdB
expression patterns also led us to suggest that sub-
functionalized gene expression patterns are derived
from the divergence of cis-regulatory element(s) or
trans factor(s) [including coding and noncoding
region(s) of trans factor(s)]. However, it is unclear
whether genome duplication and subfunctionaliza-
tion provide a sufficiently reasonable explanation for
how highly robust developmental mechanisms were
modified to generate twin-tail morphology in the
goldfish lineage.

REPRESENTATIVE MORPHOLOGICAL
MUTATIONS IN ORNAMENTAL
GOLDFISH

Although the gene responsible for twin-tail goldfish
was previously identified by us as the chdA gene
through the application of molecular developmental
genetic techniques and knowledge,27,30 other mor-
phological mutations have not been investigated at
the level of molecular developmental genetics. Mor-
phological variations of the goldfish have been well-
described in various textbooks.2–4 For example,
23 different goldfish strains were previously
described in terms of their genealogical relationships7

(Figure 1(j)). In addition, Smartt2 categorized modern
goldfish variations into 16 groups, as follows: Com-
mon goldfish, Comet, Shubunkin, Wakin, Jikin, Fan-
tail, Ryukin, Tosakin, Veiltail, Telescope, Celestial,
Bubble-eye, Pon-pon, Perlscale, Oranda, and Ran-
chu-Lionhead Group.2 As can be inferred from the
above examples, there is no clear consensus on how
diverged goldfish strains should be categorized and
designated. The major reason for the lack of a sys-
tematic nomenclature system for goldfish varieties is
that all goldfish strains, even those with highly
diverged appearances, can mate with any other
strain, and give rise to viable offspring, thereby
resulting in new strains which cannot be categorized
by the previous criteria. As external morphology and
coloration are major factors with which breeders cat-
egorize goldfish strains, newly established strains
were arbitrary designated by breeders, without
detailed consideration of their anatomical, develop-
mental, and molecular genetic background.

In this section, we introduce certain morphologi-
cal mutations of genetically fixed ornamental goldfish
strains, with consideration given to their anatomical
features (Table 1). We first divide the goldfish body
into cranial and postcranial parts along the anterior to
posterior body axis, in a similar manner to other ver-
tebrate species.47,48 In addition, mutated morphologi-
cal features in postcranial regions were also further
subdivided into three types47,48; mutations at trunk,
median fins, and scale (Table 1). Moreover, we pro-
vide some descriptions of hypothetical candidate genes
responsible for these morphological mutations, taking
into account the presumably equivalent zebrafish
mutant strains and the developmental processes that
cause these morphological mutations (see below).

Mutations at the Cranial Level
The ‘hood’ or warty growth (epidermal thickening in
cranial and opercula regions), narial bouquets or
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pon-pon (growth of epidermal tissues around the
nostril), water bubble eyes (developed infraorbital
vesicle), telescope-eye (protuberant eyes), and
upwardly directed protuberant eyes mutations can be
considered to be mutations at the cranial level
(Table 1).2 Of those mutations, the hood, protuber-
ant eyes, and upwardly directed protuberant eyes
mutations involve alterations of skeletal morphol-
ogy.25,49 Moreover, the inheritance manner of protu-
berant eyes is Mendelian, as shown by genetic
approaches.7 Although the molecular genetic back-
ground of this eye mutation in goldfish is still
unknown, the adult morphology of the silva/fdv zeb-
rafish mutant, in which tumors grow from the eyes,
implies that this locus and/or its related locus may be
responsible for the goldfish eye mutations.29,50

Mutations in the Postcranium Region

Trunk Level
Globular body shape is a representative mutation of
the mid trunk region, and can be observed in various
different goldfish strains (Figure 1(c)–(i) and
Table 1). Moreover, this morphological mutation
can be further subcategorized into several different
levels, including curved back, straighter back, and
short- and medium globular.2 Goldfish strains with
globular shapes are also known to have reduced
numbers of vertebrae.26 In addition, the number of
vertebrae varies among different mutant strains. For
example, Ryukin and Ranchu are both twin-tail
ornamental goldfish strains, but these strains differ in

their total number of vertebrae, with 25–29 and
19–23, respectively.26 This reduction in the number
of vertebrate arises from disruption of metameric
patterns and/or the reduction of vertebrae, neural,
and hermal spines.25

Based on the observations that (1) twin-tail
goldfish have mutations in one of the two recently
duplicated chordin genes, (2) dino/chordin mutants
exhibit malformation of axial skeletal elements,27,39

and (3) chordin gene expression affects the ossifica-
tion process,51 it is predicted that all of ornamental
goldfish with the twin-tail phenotype possess a cer-
tain level of disorganization of skeletal development.
With the exception of the chdA gene,27 no other gene
has yet been discovered to affect axial skeletal mor-
phology. However, the finding that the fss/tbx24 zeb-
rafish mutant exhibits malformation of axial skeletal
elements29,52,53 suggests that somitogenesis related
genes may also help determine the number of verteb-
rae in goldfish.

As regards mid-trunk morphology, it is worth
mentioning that the ratio of the size of the anterior
and posterior swim bladder differs between WT gold-
fish and ornamental strains with a globular shape3;
the anterior swim bladder is considerably smaller
than the posterior swim bladder in goldfish strains
with a globular shape.3 This implies that the size and
morphology of the Weberian apparatus may also be
altered in each skeletal element.54

Caudal Fin
Ornamental goldfish variations include twin-tail,
long-fin, and caudal finless mutants2 (Figure 1(b)–(i)

TABLE 1 | Representative Mutant Morphological Features in Goldfish

Mutated Locations Name of Phenotype
1

Representative Goldfish Strains

Cranial level

Hood or warty growth Oranda-shishi-gashira, Ranchu

Narial bouquets Osaka-ranchu, Hanafusa

Water bubble eyes Water bubble eyes strain (Suihougan)

Protuberant eyes Telescope-eye (Demekin)

Upwardly directed protuberant eyes Celestial (Chotengan)

Postcranial level

Trunk Globular shape of body Ryukin, Ranchu

Median fins Twin-tail Ryukin, Oranda-shishi-gashira, Ranchu

Caudal fin less Meteor
Twin-anal fin Ryukin, Oranda-shishi-gashira, Ranchu

Long fin Commet
Dorsal-fin less Ranchu, Chotengan

Scale Dormed scale Pearlscale
1 Please see main text and Ref 2.
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and Table 1). As mentioned above, twin-tail is one of
the representative mutations at the caudal level, and
its responsible gene has already been identified as
chordin.27 It should also be noted that there are var-
iations in caudal fin morphology among twin-tail
goldfish strains, and these strains have been subdi-
vided into different categories by breeders (Figure 1
(b)–(i)).2 For example, the black telescope strains
(Figure 1(f )) tend to show well-spread upper and
lower lobes of the caudal fin, as compared with the
other twin-tail goldfish strains shown in Figure 1(b)–
(e) and (g)–(i). Watase also described these variations
of the twin-tail, focusing on the skeletal anatomy by
indicating how many internal caudal skeletal struc-
tures (including hemal spines, hypural, and parhy-
pural) are polymorphic, and which varied among
different strains (Figure 3(a)).23 These differences
indicate that there are additionally accumulated
mutations which provide variations in not only
embryonic, but also postembryonic skeletal morpho-
genesis. Moreover, it was empirically implied that the
water temperature has some effect on twin-tail mor-
phology.2 The finding that the snhty68 mutation of
the bmp7 gene (a DV patterning gene) in zebrafish is
temperature-sensitive55 suggests that its homologous
genes may be involved in variations of twin-tail mor-
phology in goldfish.

The long-fin goldfish mutation has been fixed
as the Comet strain and its variations.2 These strains
have a slender body, and all of the fins, including the
median and paired fins, are elongated. At least two
different mutant zebrafish strains with elongated fins
have been isolated (lof and alf )29 and so we can com-
pare these mutants with the long-fin goldfish strains.
Moreover, while a caudal finless goldfish mutant
(‘Meteor’) was documented by Smartt 2001, this
strain appears to be uncommon among modern gold-
fish varieties. Caudal finless mutants were also found
among zebrafish dino/chordin and sbn/smad5
mutants,39,56,57 suggesting that the same type of
mutation may account for both the Meteor strain
and these zebrafish mutants.

Anal Fin
Watase also observed the exo- and endoskeletal mor-
phology of the anal fin in twin-tail goldfish, and
reported that the anal fin and its supporting radials
are also bifurcated in some twin-tail goldfish strains
(Figure 3(b)).23 As formation of the bifurcated anal
fin requires a bifurcated ventral fin fold, this mutant
morphological feature might also require the chordin
gene mutation. However, the evidence that some
twin-tail goldfish do not have bifurcated anal fins
suggests that the formation of endo- and exoskeletal

bifurcated anal fin morphology requires not only the
chordin gene, but also some other additional factors.

Dorsal Fin
It appears that the dorsal-finless mutant was estab-
lished after twin-tail strains were genetically fixed in
the ornamental goldfish population58 and this record
is consistent with molecular phylogenetic analysis.
Ranchu and Chotengan (Celestial) are representative
dorsal finless mutant strains, which may have been
established during the recent history of goldfish
breeding.8 Moreover, these strains exhibit dramatic
reductions in the number of vertebrae (see above).26

Taking into account the observation that genetic
diversity was reduced in domesticated goldfish during
their breeding history,59 it is expected that the reduc-
tion of vertebrae in dorsal-finless mutants is related
with reduced genetic diversity in these two strains.

As the expressivity of this morphological muta-
tion is fairly unstable, the inheritance manner of this
morphology has not been properly tested.7 From the
evidence that the sub mutant zebrafish exhibits a
reduction in the dorsal fin,28,29 this zebrafish mutant
appears to be comparable to the dorsal finless gold-
fish mentioned above at the molecular developmental
level.

Scale
The domed scale mutation is fixed in some goldfish
strains, such as the Pearlscale strain. Unlike muta-
tions in pigmentation patterns which do not affect
scale morphology,18 this domed scale mutation
affects the morphology of each scale in the entire
body.2 Moreover, the similar mirrorscale mutation
was reported by Smartt,2 but this mutation is not
common in the goldfish population; this mutation
has also been established in common carp popula-
tion, through mutation of the fgfr1 gene.60 It is
expected that further investigation of fgfr1 and its
related genes may reveal why the same mutation is
not common in goldfish.

STRENGTHS AND WEAKNESSES OF
GOLDFISH AS A MODEL ANIMAL

The above-mentioned variation of goldfish morphol-
ogy has also made goldfish of particular interest to
researchers.2–4 Certain other factors have also made
goldfish suitable for use as an experimental animal,
including its ease of purchase and handling, as well
as its viability under artificial aquarium conditions;
from the 1990s, increasing numbers of reports have
described the use of goldfish for studies of molecular
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developmental biology and neuroscience.61–82 Addi-
tional advantages of goldfish for such studies
include its suitable size for manipulation of neural
tissues and embryos.61,65,72–79,82 However, this ani-
mal has not become a model organism for modern
molecular developmental biology, partly because
of its phylogenetic proximity to zebrafish
(Figure 2).10,11,30,83

As zebrafish has become widely used as a
model animal in the field of the molecular develop-
mental biology because of the ease of access to its
embryos, goldfish embryological studies have gradu-
ally faded away.84–89 While the large size of goldfish
embryos was previously advantageous, this advan-
tage became almost insignificant after manipulation
techniques were established in zebrafish.70,84 Moreo-
ver, goldfish provides no obvious benefits to
researchers who are purely interested in molecular
developmental genetics, as goldfish require large
aquarium systems and long periods of time for main-
tenance and spawning.83 Indeed, the phylogenic
proximity and embryological similarities of these two
teleost species suggest it is unlikely that studies of
goldfish would yield discoveries of molecular phe-
nomena that would not be revealed by studies of
zebrafish.83,90

For the same reasons mentioned above, goldfish
may also not be attractive to researchers in the field
of evolutionary biology. For investigating the ances-
tral state of the fish lineage, medaka is more useful
than goldfish, because almost all of the molecular
techniques of zebrafish research are also suitable for
studies of medaka (Figure 2).91–93 As such, compari-
sons between the phylogenetically distant medaka
and zebrafish have provided insights into the com-
mon ancestral state of a wide range of teleosts.94–96

By the same logic, while comparisons between zebra-
fish and other model vertebrate animals tend to be
recognized as useful,97,98 comparisons between the
phylogenetically proximate goldfish and zebrafish
have not been emphasized by researchers.

Thus, although several neuroscientists continue
to use goldfish as a model,80,81 there is no precedent
for intensive use of goldfish in evodevo studies. In
fact, although the significance of investigating Cypri-
niformes closely related to zebrafish has been empha-
sized by a few researchers,99–101 almost no
researchers have specifically indicated the potential of
the goldfish morphological variation for evodevo
studies.

However, certain other teleost species (e.g.,
cavefish, sticklebacks, and cichlid species) have
recently been used by researchers, despite the fact
that these teleost species are disadvantageous when it

comes to the application of molecular developmental
genetic techniques, as compared to zebrafish and
medaka (Figure 2). These teleost species have been
used as models for evodevo studies.102–123 Such
recent progress has prompted us to reconsider
whether the extensive morphological variation of
goldfish may also further our understanding in the
evodevo field.

In addition to the progress made using these tel-
eost species, studies of the genomic sequences of
domesticated birds and mammals also have implica-
tions for the use of goldfish. The genomic sequences
in domesticated animals (e.g., dog, cat, cow, chicken,
and pigeons) have provided several lines of evidence
for how physiology, morphology, and color patterns
have been influenced by artificial selection.124–128

Simultaneously, these studies have motivated us to
ask how the developmental mechanisms related to
these artificially selected phenotypes evolved.129,130

The above-domesticated mammalian and avian spe-
cies may help answer this question, but animals with
both a history of domestication and greater embryo-
logical availability (i.e., goldfish) would be prefera-
ble. In particular, large numbers of highly
transparent embryos (as observed for zebrafish and
medaka) would facilitate observations of develop-
mental processes at the molecular level. To determine
whether the goldfish is suitable to answer the above
question, we examined the domestication process of
its morphologically divergent strains and their devel-
opmental features.

CONTRAST BETWEEN THE
EFFECTS OF MUTAGENESIS
AND DOMESTICATION ON
MORPHOLOGICAL FEATURES

Similar to how divergent goldfish strains were geneti-
cally fixed by human activity, zebrafish mutant
strains were also established under artificial condi-
tions. The breeding process exerts selective pressures
on several different phenotypic features; e.g., if an
individual fish cannot physiologically adapt to the
artificially prepared condition in the laboratory or
breeder’s pond, the individual (whether goldfish or
zebrafish) will be eliminated from the breeding popu-
lation. However, the processes of mutant generation
differ in terms of the selective pressure on morpho-
logical features (Figure 9). In this part, we contrast
zebrafish mutagenesis with goldfish breeding, focus-
ing on morphological features.
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Absence of Continuous Directional
Selection on a Specific Morphological
Trait in Zebrafish Mutant Strains
Zebrafish mutant strains can be considered not to
have undergone directional selective pressure of their
morphological features, for the following reasons.
During initial large-scale mutagenesis (performed to
identify genes regulating morphogenesis and develop-
ment), a wide range of mutated phenotypes may be
screened by researchers.86,88,89,131–136 At this first
step, researchers may carefully screen for any detecta-
ble mutated phenotypes which show even subtle dif-
ferences from WT (Figure 9(a) and (b)).88,89,131 In
the second part of the process, mutated loci may be
subject to genetic isolation or purification. More spe-
cifically, researchers will perform backcrosses
between the mutant and WT zebrafish individuals to
segregate potentially multiple mutated loci. Through
this process, mutant zebrafish individuals with dou-
ble or triple mutated loci may be removed from the
zebrafish mutant population, increasing the ease at
which researchers can identify the responsible locus
or allele for the mutated phenotype.

After the responsible locus and/or allele have
been found, the established zebrafish mutant strains
tend to be maintained for further detailed molecular,
genetic, and developmental analyses.28,86,131,137 Dur-
ing maintenance of the mutant strains, it is unlikely
that strong directional selection is applied to certain
morphological features. For example, a mutated
allele which causes high lethality tends to be main-
tained in heterozygous zebrafish individuals. In this
case, the allele cannot be the subject of selection
(Figure 9(c) and (d)). Mutants that do not show
lethal phenotypes are screened and maintained by
using their mild mutated phenotypes as an index. In
such cases, the distribution patterns of the pheno-
types are not largely affected, although the mutant
individuals with low penetrance and expressivity of
the phenotypes tend to be removed from the popula-
tion by researchers (asterisks in Figure 9(b) and (c)).
For example, although mutant zebrafish strains with
bifurcated fin folds were isolated by mutagenesis,28,29

researchers tend not to preferentially select ‘cham-
pion’ individuals with the most clearly bifurcated fin
fold during the maintenance process. In other words,
a certain range of polymorphisms is permitted pro-
vided the individuals all possess the required mutated
morphology.

More generally, one cannot assume that zebra-
fish researchers impose strong directional selective
pressures, by means of which isolated zebrafish
mutant populations would undergo dramatic changes
in their distribution patterns and in the mean of their

phenotypic features during the maintenance process
(Figure 9(a)–(d)).86,88,89,131–136 The experimental
mutagenesis process of not only zebrafish, but also of
other teleost model systems,138–143 can be considered
to lack repeated selection for mutations. In this way,
it is different from the process of goldfish breeding
(Figure 9(e)–(g)) (see below).

Presence of Directional Selection on
Goldfish Ornamental Morphology
Unlike the mutated phenotype of zebrafish mutants
(Figure 9(a)–(d)), the ornamental morphologies of
goldfish have been subject to strong directional selec-
tion toward characteristics considered more attrac-
tive and valuable for fanciers and breeders (Figure 9
(e)–(g)).2,5 For example, if one goldfish individual
exhibits properties with higher commercial value
(such as more symmetric and well-spread bifurcated
caudal fins) than other individuals, breeders will use
the former (the ‘champion’) as the parent fish to pro-
duce the next generation. In other words, for eco-
nomic reasons, breeders want to exclude
polymorphisms which may result in phenotypes with
no value from their goldfish population.

In the context of evolutionary biology, the
breeding process of goldfish morphological mutant
strains can be rephrased as follows: (1) a goldfish
individual showing a spontaneous mutated morpho-
logical phenotype is selected (Figure 9(f )); (2) the
individuals which show the preferred morphological
phenotypes are used as parent individuals to produce
the next generation (Figure 9(g)); (3) the same proc-
ess may be performed repeatedly; and (4) finally, the
most preferred mutated morphological phenotype is
fixed as the established ornamental morphology in
the population and unpreferred phenotypes are elimi-
nated, as occurs in nature (Figure 9(h)).144

The presence of directional selection on goldfish
ornamental morphology may allow us to investigate
the evolutionary consequence of continuous and
directional artificial selection on adult morphological
phenotypes. More importantly, the manner by which
the developmental process was modified by direc-
tional selective pressure on adult morphology can be
examined using highly diverged goldfish morpholo-
gies, at the levels of both embryology and genetics.

ALLOTETRAPLOIDIZATION
AND MORPHOLOGY

By examining the origin of chromosomes, genome
duplication can be categorized into two types: autop-
olyploidization and allotetraploidization.145 The
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former refers to genome doubling in the same species,
while the latter is duplication of the genome through
species hybridization. Allotetraploidization has been
found to have occurred in a number of plant species
and in a limited number of animal species (e.g.,
amphibian species).146–153 A recent genome project
involving various common carp strains revealed that
its genome duplication event is a case of allotetraploi-
dization, as apparent from the clear two-to-one
orthologous relationship between zebrafish and com-
mon carp.154 Although whole genome sequences are
not yet available for goldfish as they are for common
carp, the phylogenetic and cytogenetic proximity of

these two teleost species suggests that allotetraploidi-
zation occurred in the common ancestor of these tele-
ost species (Figure 2).10,155,156

How did allotetraploidization contribute to
goldfish morphological evolution? A conventional
answer to this question is that the expression patterns
of the subfunctionalized or neo-functionalized genes
were modified,44 enabling divergence of goldfish
morphological features, such as fins, eyes, and body
shape. Such arguments are contained in a number
of papers dealing with vertebrate genome
evolution.157–159 In fact, the mirror carp phenotype
and duplicated fgfr genes were explained using the

FIGURE 9 | Contrast between zebrafish mutagenesis and goldfish breeding. (a–d) The screening and maintenance process for zebrafish
mutants. (e–g) Establishment of goldfish mutant strains. The vertical and horizontal axes of each graph indicate the individual number and
phenotype of the populations, respectively. (a, e) Wild-type populations show a narrow distribution of the phenotype. (b, f ) Distribution patterns
of the wild-type, heterozygous, and mutant homozygous population in early generations. Arrowheads indicate mutated phenotypes. Black
arrowheads indicate the most preferred mutated phenotypes for breeders. Horizontal arrows indicate selective pressures. This scheme is described
under the assumptions that the + allele is dominant to the − allele, (+/+) and (+/−) populations show narrow and identical distributions, and the
population consisting of −/− individuals shows a polymorphic phenotype. (c, g) The distribution patterns after screening. The screening of
homozygous mutants with morphological features tends to remove individuals with low penetrance of the phenotype (asterisks in b and c). (d, g)
The distribution patterns after long-term repeated selections. (d) The distribution patterns of the zebrafish mutant populations tend to show the
same distribution patterns with former generations (c). (g) During goldfish breeding, the most preferred mutated traits in each generation (black
arrowheads in g and h) tend to be selected and finally fixed in the population. If the morphological feature in question has high commercial value,
stabilizing selection makes the distribution pattern narrow.
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above framework.114 Moreover, this explanation
would account for the bifurcation of the axial skeletal
system through the modification of DV patterning-
related genes (Figure 4). However, such an interpreta-
tion raises further questions, as follows. Why is
morphological diversity observed in the goldfish line-
age, but not in that of common carp? Is it possible to
generate ‘twin-tail’ common carp if we subject WT
common carp to mutagenesis and selective pressure?
Is the appearance of the twin-tail morphology truly
related to allotetraploidization? More generally, it
appears that the relationship between allotetraploidy
and morphological evolution has not been considered
in depth in vertebrate species.

Abundant examples of allotetraploid species
have enabled the relationship between morphological
divergence and allotetraploidy to be well investigated
at the molecular level in plants.45,46,149–152 Adams
and colleagues150–152 analyzed gene expression pat-
terns of duplicated genes that arose from allotetra-
ploidization (paralogous or homologous genes) in
different tissues, and proposed that the duplicated
genes were silenced by epigenetic factor(s).150,151 The
phylogenetic divergence of plants and animals make
it difficult to directly compare allotetraploidization
between these organisms. However, it may be worth
investigating whether the same kind of event
occurred in the common ancestor of goldfish and
common carp, focusing on epigenetic factors and
allotetraploidization. It is expected that further com-
parative studies between allotetraploidized species of
plants and animals will provide clues to answer the
above questions.

INCREASED MORPHOLOGICAL
DIVERSITY WITH REDUCED
GENETIC VARIATION

The variation of goldfish strains has been described
in genetic terms by a few researchers (Figure 1). In
addition, the number of described strains has
increased in the last 100 years (Figure 10).2,4

Although differences in the criteria for how goldfish
strains are categorized makes it is difficult to com-
pare the number of strains reported by different stud-
ies, it is clear that the variety of goldfish strains
increased from the 1900s to the 1970s through
hybridization of earlier strains.2 Curiosity may have
driven such efforts to produce new strains.2 Moreo-
ver, the ‘standard form’ and ‘specific characteristics’
of certain goldfish strains are defined by local gold-
fish specialist societies and the organizers of competi-
tive shows.2 Therefore, it appears that goldfish

morphological features remain under selective pres-
sure by breeders, thereby giving rise to directional
effects that increase morphological variation and/or
ornamental attractiveness.

In fact, it is certain that morphologically diver-
gent strains were increased by breeders during the
history of goldfish domestication from the middle
ages to the early modern period; such an increase
also occurred during contemporary history
(Figure 10),2,7,8 although the precise rate of increase
is unknown. Simultaneously, the goldfish population
experienced several bottleneck events or founder
effects. In fact, taking into account the finding that
chdAE127X alleles are homozygous in all of the inves-
tigated twin-tail goldfish strains,27 it is assumed that
most of the morphologically divergent goldfish
strains were derived from a limited number of ances-
tors. This assumption is consistent with the molecu-
lar population genetic analysis, which suggested that
haplotype diversity decreased during the domestica-
tion process.59 However, this raises a question: how
did goldfish breeders succeed in generating so many
morphologically divergent goldfish strains from a
low variety of genetic polymorphisms (Figure 1)?

The first type of answer to the above question
is based on the idea that a certain level of genetic
polymorphisms was maintained to enable morpho-
logical variations in goldfish populations, even after
the bottleneck and founder effects (Figure 11(a) and
(b)). For example, genetic polymorphisms were
increased by hybridization between different goldfish
or wild Carassius auratus populations and/or newly
occurred mutations, which contributed to the mor-
phological changes (Figures 1(j) and 11(a)). In fact,
several variations of goldfish appear to have been
established by hybridization between different gold-
fish strains, according to historical descriptions
(Figure 1(j)).2,4,7,8 Furthermore, on the basis that

FIGURE 10 | Increase in described goldfish strains from the early
to late 20th century. The number of strains is based on the study by
Smartt.2
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allotetraploidization occurred in the lineage of com-
mon carp/goldfish (Figure 2), it is expected that some
of the resulting paralogous genes may behave as dif-
ferent alleles of the same gene, implying that certain
levels of genetic polymorphisms can be maintained
even after inbreeding (Figure 11(b)).

The second type of answer is based on the
reduction of developmental robustness (Figure 11
(c) and (d)). It is known that some mutated pheno-
types derived from genetic polymorphisms
(or sometimes environmental factors) can be masked
by developmental robustness (or the ‘capacitor’), but
are exposed should such robustness decrease
(Figure 11(c)).161–163 Hsp90 of Drosophila and cave-
fish are well known examples.114,160 Moreover, gene
regulatory network systems themselves are known to
act as capacitors.161,162 Given that the chordin-
related dorsal ventral patterning molecular network
has the properties of a capacitor (Figure 4), it is pos-
sible that a reduction of the robustness of the DV
patterning mechanism caused by the stop codon
mutation exposes morphological variations (includ-
ing twin-tail morphology) (Figures 4 and 5).27

The two possible explanations above are not
mutually exclusive. It is reasonable to assume that
both of these evolutionary events occurred during
goldfish domestication. Hence, these evolutionary
scenarios should be considered together. For exam-
ple, genetic variations may have initially increased by
allotetraploidization, which may have been followed
by a near simultaneous reduction of genetic poly-
morphisms and developmental robustness. In this
case, there is a possibility that the remaining genetic

polymorphisms will be exposed and detected as vari-
ous different phenotypes (Figure 11(d)). Alterna-
tively, after a significant reduction of genetic
polymorphisms and developmental robustness, the
level of genetic polymorphisms may have been
restored by hybridization between different goldfish
populations, which is empirically performed by bree-
ders to avoid inbreeding depression (Figure 11(e)).
Moreover, it is also assumed that the two evolution-
ary processes mentioned above occurred multiple
times. Establishment of a plausible evolutionary sce-
nario for goldfish morphological diversity will
require further studies, employing a combinational
approach based on principles relating to genomics
and developmental biology (see below).

COMBINATIONAL APPROACHES
TOWARD WHOLE GENOME- AND
HIGH-RESOLUTION ONTOGENETIC
ANALYSES

In light of the evidence that certain domesticated ani-
mals have undergone the aforementioned evolution-
ary process (increasing genetic polymorphisms and
reducing developmental processes), morphologically
varied goldfish strains may provide novel insights
into how phenotypic variations of dogs, cows, pigs,
chickens, and pigeons were established.124–128 The
establishment process of phenotypic variations in
those domesticated amniotes was investigated by
analyzing whole genome sequences.124–128 A refer-
ence whole genome sequence is also required to

FIGURE 11 | Schematic representation of the relationship between genetic polymorphisms and developmental robustness. Arrows indicate
the direction of changes in genetic polymorphisms and developmental robustness. Circles represent the populations [white: before the change;
gray: after the change(s)]. (a) Increased genetic polymorphisms under low developmental robustness. This enables polymorphic phenotypes to
become the subject of selection. This condition can be generated by additional mutations and/or hybridization between different strains or species.
(b) Decreased genetic polymorphisms under low developmental robustness. If the genetic polymorphisms remain, the population depicted as a
gray circle can still exhibit polymorphic phenotypes. This condition can be caused by bottlenecks and inbreeding. (c) Reduced robustness while
retaining genetic polymorphisms. The genetic polymorphisms can manifest as phenotypic polymorphisms, as observed in the research on Hsp90 of
Drosophila.160 (d) Simultaneous reduction of robustness and genetic polymorphisms (light to dark gray circles), preceded by an increase of genetic
polymorphisms (white to light gray circles). (e) Increased genetic polymorphisms (light to dark gray circles), preceded by a reduction of robustness
and genetic polymorphisms (white to light gray circles).

Overview wires.wiley.com/devbio

286 © 2016 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc. Volume 5, May/June 2016



investigate the divergence process of morphological
features of goldfish. Once we obtain the available ref-
erence whole genome sequence, it will be relatively
easy to identify which loci tend to show high
(or low) heterozygosity in various goldfish strains, as
previously examined for the above amniotes.124–128

In addition, comparisons between goldfish and these
domesticated amniote species may provide us with
insights into how population size, mating behavior,
and generation time reflect morphological evolution.
However, it is possible that linkage mapping between
genetic markers and adult phenotype based on the
whole genome sequence may be insufficient to deter-
mine the relationship between genetic polymorphisms
and developmental robustness (see also Twin-Tail
Goldfish and Its Genetic Background section). It is
certain that further detailed phenotypic data will also
be required.

Fortunately, contrary to the aforementioned
ammonites, goldfish has the advantages of embryonic
availability and fecundity, also possessed by zebrafish
(please see Strengths and Weaknesses of Goldfish as
a Model Animal section).30,83,90 These advantages
allow us to examine the ontogenetic process at high
resolution, including embryonic, and postembryonic
stages,83,164 by applying in vivo and high-resolution
imaging techniques,165–168 as well as performing
morphometric and ontogenetic analyses.169–174 If we
can compare different types of morphologically
divergent goldfish strains at the levels of both whole
genomes and ontogenetic processes, we can derive
specific answers to the following questions: are the
developmental processes stable or unstable under
inbreeding and outbreeding conditions, and are cer-
tain developmental stages and morphogenesis stable
or unstable under the inbreeding condition? Further-
more, comparative analysis between goldfish mor-
phological variation and mutated phenotypes in
medaka and zebrafish will also allow us to identify
conserved morphology and robust developmental
processes in the teleost lineage (Figure 2). This com-
parison will provide an opportunity to determine
whether artificial selection has affected highly
conserved developmental processes in the goldfish
lineage. We expect that the goldfish will provide
an empirical way to investigate the relationship
between phenotypic and genotypic variation through
introducing the concept of developmental robustness,
rather than relying on simple statistical comparisons
between nucleotide substitutions and adult
morphology.

Finally, we should mention the significance of
the above mentioned combinational approaches for
the evodevo field and its relationship with certain

other fields. In fact, the significance of such combina-
tional approaches toward genomics and ontogeny
were previously emphasized by Wu and his
colleagues.175–177 Approaches introduced in their
papers (e.g., developmental, ecological, and regula-
tory dissection of complex traits; so called ‘functional
mapping’) are designed to investigate how dynamic
traits (including growth rate of animal and plant
bodies, tumor size, and viral load in human, among
others) connect with QTL.175–177 Although their
focus appears to be on developing the methodology
for using linkage mapping to recognize complex
traits as a dynamic system, such methodology will
also be of interest to evodevo researchers. For exam-
ple, it is possible that the loci affecting developmental
trajectories which are sought by Wu et al. might be
related to the genes involved in heterochrony, which,
as molecular entities, are relevant to evodevo
research175–177; however, the timescale examined by
these two research fields is not the same. At the
moment, little is known about the time-dependent
genetic effects on highly diverged morphological
traits in vertebrate species, due to the difficulty of
data acquisition. However, it is expected that the
above mentioned combinational approaches to gold-
fish morphological features will allow biologists to
reconsider how evodevo-derived concepts (e.g., het-
erochrony, heterotopy, and developmental con-
straints) are related to the biological phenomena
concerning human disease and crop plants investi-
gated in the fields of genetics and genomics.175–180

CONCLUSION

Although the morphological variations of the gold-
fish intrigued early biologists, such diversity has not
been intensively investigated, presumably because of
its perceived lack of use for answering significant bio-
logical questions. However, recent genomic studies of
domesticated animals prompted us to ask how artifi-
cial selection and developmental mechanisms are
related. The embryonic availability of goldfish, as
well as its phylogenetic-proximity and embryological
similarity to zebrafish, mean that it may be one of
the most suitable organisms with which to answer
the above question. Moreover, the continual selective
pressure on the morphological features of goldfish
during the breeding process further increases its suit-
ability for answering such questions. In addition,
recent genomic analysis of the common carp raised
the possibility that goldfish is also allotetraploid. This
implies that slightly diverged duplicated genes may
have played a crucial role in the morphological
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diversification of goldfish lineages. Furthermore, the
goldfish may also provide a practical model for con-
sideration of how developmental robustness and
genetic diversity are related. Goldfish studies promise

to improve our integrative understanding of the rela-
tionships between genome duplication, selective pres-
sure, alterations of the developmental system, and
morphological evolution.
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